Von Molekülen zu OLEDs
13.04.2015
Wissenschaft, Forschung & Technik
Mainz. Eine von Projektleiter Dr. Denis Andrienko geführte Forschungsgruppe am MPI-P (Theorie Gruppe unter Leitung von Prof. Kurt Kremer) hat Multiskalen-Techniken entwickelt, die es ermöglichen die makroskopischen Eigenschaften organischer Leuchtdioden (OLEDs) ausgehend von der chemischen Zusammensetzung vorherzusagen. Die Verbindung zwischen molekularer und makroskopischer Größenordnung wird durch eine Kombination von "Coarse-Graining" mit einem effizienten Simulationsalgorithmus möglich (siehe Abbildung). Doktorand Pascal Kordt und Postdoktorand Dr. Jeroen van der Holst haben, zusammen mit anderen Entwicklern, die Implementierung dieser Ideen ausgeführt. Es können nun Elektronen- und Exzitonenbewegung in makroskopisch großen, OLED-Schichten simuliert werden, d.h. Schichten von ca. 100 Nanometern. Die Methoden sind in der wissenschaftlichen Zeitschrift Advanced Functional Materials veröffentlicht, wo man den Artikel auf der Titelseite der aktuellen Ausgabe findet.
Denis Andrienko erklärt den industriellen Nutzen der Software: "Moderne Handys nutzen bereits OLED (AMOLED)-Displays, OLED-Fernseher kommen auch bereits auf den Markt. Dennoch werden in der Forschung nach neuen Materialen diese oft einfach 'ausprobiert'. In unserem Ansatz können die Struktur der Materialien (Morphologie) sowie die Ladungsträgerbewegung darin systematisch vorhergesagt werden, ausgehend nur von der chemischen Strukturformel. Verglichen zu Experimenten ist so eine direkte Verbindung zwischen Chemie und Morphologie möglich." Seine Erwartung ist, dass diese computerbasierte Forschung in den kommenden Jahren stark wachsen wird, da sie Firmen viel Geld für die Synthese und Charakterisierung neuer Materialien sparen kann. Diese Erwartung wird vom Europäischen Forschungsrat und dem Bundesministerium für Bildung und Forschung geteilt, die das Projekt finanziell unterstützen (MESOMERIE, FKZ 13N10723).
Der Nobelpreis in Physik 2014 wurde für die Erfindung effizienter, blauer lichtemittierender Dioden (LEDs) an Isamu Akasaki, Hiroshi Amano und Shuji Nakamura verliehen. LEDs findet man als Anzeige in Weckern oder Unterhaltungselektronik, sie finden Verwendung in Taschenlampen oder in großen Displays, wo winzige rote, grüne und blaue LEDs einen Pixel formen und Millionen von Pixeln ein Bild. In jedem Pixel findet konstant die Rekombination von Elektronen mit ihren Gegenstücken (Löchern) statt. Dabei werden Photonen, die Elementarteilchen des Lichts erzeugt. In Abhängigkeit des verwendeten Materials haben diese Photonen verschiedene Energien, oder Wellenlängen, was die Farbe des Lichts bestimmt. Herkömmliche LEDs werden aus anorganischen Materialien hergestellt und zeichnen sich durch lange Haltbarkeit aus. Die ist bei organischen Halbleitern teilweise noch ein Problem, die jüngste Entwicklung zeigt jedoch, dass diese andere, vorteilhafte Eigenschaften mitbringen: extrem hohe Kontrastraten und die Möglichkeit gekurvte oder flexible Displays herzustellen.
Die Aufgabe von Computersimulationen ist es, die Suche nach passenden Materialien zu unterstützen. Selbst mit modernen Supercomputern ist es jedoch nicht möglich eine komplette OLED mit den Details aller Atome zu simulieren. Daher werden Multiskalensimulationen genutzt: zuerst werden die Eigenschaften eines einzelnen Moleküls auf quantenmechanischer Ebene berechnet. Anschließend wird ein klassisches Modell des Moleküls parametrisiert, dass dazu dient Systeme mehrerer Tausend Moleküle zu untersuchen. OLEDs sind jedoch aus Schichten in der Größenordnung von 100 Nanometern aufgebaut (Millionen von Molekülen). Im Softwarepaket VOTCA wird ein stochastisches Modell genutzt, dass die Verteilung relevanter mikroskopischer Eigenschaften (z.B. den Abstand zwischen Molekülen) nachbildet, und dann genutzt werden kann um eine komplette OLED zu simulieren.
Trotz eines klaren Plans für die Erforschung neuer OLED Materialien bleibt die Forschung immer spannend, da die Methoden und die Software ständig weiterentwickelt werden.
Bildquelle: © AFM
Organische Leuchtdioden Simulation Organische Halbleiter Pascal Kordt Jeroen van der Holst Denis Andrienko Kurt Kremer
http://www.mpip-mainz.mpg.de/Molekuelen_zu_OLEDs
Max-Planck-Institut für Polymerforschung
Ackermannweg 10 55118 Mainz
Pressekontakt
http://www.mpip-mainz.mpg.de/Molekuelen_zu_OLEDs
Max-Planck-Institut für Polymerforschung
Ackermannweg 10 55118 Mainz
Diese Pressemitteilung wurde über PR-Gateway veröffentlicht.
Für den Inhalt der Pressemeldung/News ist allein der Verfasser verantwortlich. Newsfenster.de distanziert sich ausdrücklich von den Inhalten Dritter und macht sich diese nicht zu eigen.
Weitere Artikel in dieser Kategorie
14.01.2025 | Impressum - bedent GmbH
Online Shop für Dentalbedarf in der Schweiz - Ihre zuverlässige Quelle für hochwertigen Zahnarztbedarf
Online Shop für Dentalbedarf in der Schweiz - Ihre zuverlässige Quelle für hochwertigen Zahnarztbedarf
09.01.2025 | Dr. Paul Jirak, FEBO Dr. Marietheres Jirak
Augenlaserspezialisten in Österreich - Ihr Weg zu klarer Sicht
Augenlaserspezialisten in Österreich - Ihr Weg zu klarer Sicht
09.01.2025 | Pfeiffer Vacuum+Fab Solutions
Innovative Ventiltechnologie der Series E auf der Semicon Europa
Innovative Ventiltechnologie der Series E auf der Semicon Europa
06.01.2025 | Unternehmensgruppe SIHOT
Politik trifft Wirtschaft: Finanz- und Wissenschaftsminister Jakob von Weizsäcker besucht SIHOT
Politik trifft Wirtschaft: Finanz- und Wissenschaftsminister Jakob von Weizsäcker besucht SIHOT
28.12.2024 | Ferd. Schmack jun. GmbH
Immobilienökonomie auf Spotify "Renditepolarisierung am Büromarkt?" Frank Esslinger im Expertengespräch
Immobilienökonomie auf Spotify "Renditepolarisierung am Büromarkt?" Frank Esslinger im Expertengespräch