Effektive Materialmodifikation: Molekulare Klick-Reaktionen dreidimensional kontrollieren
13.07.2012
Wissenschaft, Forschung & Technik
Am Karlsruher Institut für Technologie (KIT) ist es dem Polymerchemiker Thomas Paulöhrl gelungen, molekulare Klick-Reaktionen gezielt dreidimensional zu beeinflussen. Für diesen Durchbruch erhielt er den Lanxess Talent Award 2012. Seine Methode ermöglicht künftig nanometergenau polymere Oberflächenmuster zu erzeugen, die in der Gewebezüchtung, der Zellbiologie und der Medizin Anwendung finden.
Das Interesse an Klick-Reaktionen zur effektiven Materialmodifikation ist in den vergangenen Jahren erheblich gestiegen. Das Konzept der Klick-Chemie geht dabei auf den amerikanischen Chemiker Barry Sharpless zurück, der den Begriff 2001 erstmals definierte. Komplexe molekulare Strukturen werden nicht als Ganzes, sondern zunächst als Teilstrukturen hergestellt, die sich dann anschließend in einer Reaktion ähnlich einem Steckspiel selbstständig "zusammenklicken". Mittlerweile wurden zwar viele solcher Molekülbausteine beschrieben, bei ihnen funktioniert dieser Vorgang jedoch meist räumlich und zeitlich unkontrolliert. Für die Herstellung von Oberflächenstrukturen und dreidimensionalen Gerüsten reichen sie nicht aus.
In seiner Doktorarbeit im Arbeitskreis von Professor Christopher Barner-Kowollik entwickelt Paulöhrl unterschiedliche chemische Strategien für die gezielte Erzeugung dreidimensionaler Oberflächen mithilfe der hocheffizienten Klick-Reaktionen. Der Trick: Ein exakt definiertes mikrometer-skaliges polymeres Grundgerüst, an dem Biomoleküle, durch einen zweiten Laser aktiviert, räumlich vorherbestimmt anklicken.
Das Polymergerüst ist das Resultat einer forschungsfeldübergreifenden Zusammenarbeit innerhalb des DFG-Centrums für Funktionelle Nanostrukturen (CFN). Paulöhrl erstellte das Gerüst mithilfe der von Professor Martin Wegener entwickelten 3D-Laserlithografie (http://www.aph.kit.edu/wegener/266.php) gemeinsam mit dem Doktoranden Benjamin Richter aus der Forschungsgruppe von Professor Martin Bastmeyer, die bereits in der Vergangenheit mit den Möglichkeiten dieser neuartigen Zellgerüste experimentiert hat.
Die Moleküle werden also festgesetzt und entsprechend ihre räumliche Lage beeinflusst. Paulöhrl nutzte photoaktivierbare Biomoleküle, bei denen dieser Vorgang mithilfe von Licht in Gang gesetzt wird, wodurch nanometer-skalige Materialstrukturen aus Biomarkern geschaffen werden können. Interessant sind diese "Biomarker-Gerüste" unter anderem für die Erforschung der Stammzellendifferenzierung.
Paulöhrl promoviert am <a href="/ http://www.itcp.kit.edu/ "> Institut für Technische Chemie und Polymerchemie am KIT bei Professor Barner-Kowollik</a>. Die Forschungsarbeit wurde vom CFN mitfinanziert. Ein Teil der Ergebnisse sind in der Zeitschrift "Angewandte Chemie´ veröffentlicht: <a href="/ http://onlinelibrary.wiley.com/doi/10.1002/anie.201107095/abstract "> DOI: 10.1002/ange.201107095</a>.*
*T. Paulöhrl, G. Delaittre, V. Winkler, A. Welle, M. Bruns, H. G. Börner, A. M. Greiner, M. Bastmeyer und C. Barner-Kowollik; Klick-Chemie mit räumlicher Kontrolle: Biofunktionalisierung von Oberflächen durch photoinduzierte Diels-Alder-Reaktionen bei Umgebungstemperatur, Angew. Chemie 2012, 124, 1096 - 1099.
Klick-Chemie molekulare Klick-Reaktionen Materialmodifikation Stammzellendifferenzierung Stammzellen
http://www.cfn.kit.edu
Center for Functional Nanostructures (CFN)
Wolfgang-Gaede-Str. 1a 76137 Karlsruhe
Pressekontakt
http://www.cfn.kit.edu
Center for Functional Nanostructures (CFN)
Wolfgang-Gaede-Str. 1a 76137 Karlsruhe
Diese Pressemitteilung wurde über PR-Gateway veröffentlicht.
Für den Inhalt der Pressemeldung/News ist allein der Verfasser verantwortlich. Newsfenster.de distanziert sich ausdrücklich von den Inhalten Dritter und macht sich diese nicht zu eigen.
Weitere Artikel in dieser Kategorie
27.11.2024 | d & d Brandschutzsysteme GmbH
Integration von Flammen- und Gassicherheitssystemen
Integration von Flammen- und Gassicherheitssystemen
25.11.2024 | BMF Precision Inc.
IMSEAM an der Universität Heidelberg: Mit 3D-Druck die Mikrofluidik vorantreiben
IMSEAM an der Universität Heidelberg: Mit 3D-Druck die Mikrofluidik vorantreiben
23.11.2024 | Stcwelt
High-Tech, Hohe Renditen: KI-gestützte Handelslösungen für deutsche Investoren von STCWelt
High-Tech, Hohe Renditen: KI-gestützte Handelslösungen für deutsche Investoren von STCWelt
21.11.2024 | MERKLE CAE SOLUTIONS GmbH
Merkle CAE Solutions "On AIR"
Merkle CAE Solutions "On AIR"
18.11.2024 | Bundesverband IT-Mittelstand e.V.
DiNa - Digitale Nachhaltigkeit im IKT-Mittelstand: Start der zweiten Projektphase
DiNa - Digitale Nachhaltigkeit im IKT-Mittelstand: Start der zweiten Projektphase