Chimären in dynamischen Netzwerken
17.07.2012
Wissenschaft, Forschung & Technik
Von Physikern der TU Berlin vorhergesagte neuartige Strukturen wurden erstmalig von Wissenschaftlern der University of Maryland (USA) experimentell nachgewiesen und gemeinsam detailliert analysiert. Die Ergebnisse dieser internationalen Zusammenarbeit wurden nun in der renommieren Fachzeitschrift "Nature Physics" online veröffentlicht: http://dx.doi.org/10.1038/NPHYS2372.
Bislang konnten diese neuartigen Strukturen nur im Computer beobachtet werden. Es handelt sich dabei um sogenannte Chimera-Zustände. Diese können in einem Ring identischer Einzelsysteme mit nichtlokaler, das heißt sich über mehrere Elemente erstreckender Kopplung erzeugt werden. Sie zeigen gleichzeitig Bereiche hoher Synchronisation neben völlig irregulären, räumlich chaotischen Bereichen. Sie sind benannt nach der "Chimäre", einem feuerspeienden Fabelwesen der griechischen Mythologie, das den Kopf eines Löwen, den Körper einer Ziege und den Schwanz einer Schlange hat.
Die Chimera-Zustände werden in der aktuellen Forschung über komplexe Netzwerke heftig diskutiert, da ein Verständnis der komplizierten nichtlinearen Dynamik von Netzwerken für viele Anwendungen in der Physik (gekoppelte Laser), Biologie (neuronale Netzwerke im Gehirn) und der Technologie (Kommunikations- und Stromnetze) wichtig ist.
Dr. Iryna Omelchenko, wissenschaftliche Mitarbeiterin am Institut für Theoretische Physik der TU Berlin, beobachtete bereits 2011 anhand von numerischen Simulationen unerwartete Zustände von symmetrisch gekoppelten, zeitlich diskreten Systemen. Im Unterschied zu zeitkontinuierlichen Modellen, die häufig durch Differenzialgleichungen beschrieben werden, handelt es sich hierbei um eine iterierte Abbildung, die aus einer Abfolge von diskreten Zuständen besteht.
Unter Leitung von Prof. Dr. Eckehard Schöll und Dr. Philipp Hövel entdeckte Dr. Iryna Omelchenko, dass - trotz perfekter Symmetrie in der Kopplung und identischer Systemparameter - ein vollständig synchroner Zustand durch Veränderung der Reichweite und Stärke der Kopplung einen Übergang zu räumlich inhomogenen Profilen bis hin zu räumlichem Chaos erfährt. Die Entstehung des räumlichen Chaos erfolgt dabei über die Chimera-Zustände, die sowohl reguläre, synchronisierte als auch chaotische, desynchronisierte Abschnitte aufweisen. Ursprünglich in der Simulation kontinuierlicher Systeme gefunden, weist dies auf ein universelles Verhalten in einer Vielzahl unterschiedlicher Modellklassen hin.
Die wissenschaftlichen Arbeiten von Iryna Omelchenko finden im Rahmen der Forschungen der Nachwuchsgruppe des Bernstein Center for Computational Neuroscience Berlin und des Sonderforschungsbereiches Sfb 910 "Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzepte" der TU Berlin statt. Philipp Hövel leitet die Bernstein-Nachwuchsgruppe. Eckehard Schöll ist Sprecher des Sfb 910, der von der Deutschen Forschungsgemeinschaft über vier Jahre mit sieben Millionen Euro gefördert wird.
Der bisher rein theoretisch untersuchte Übergang, der in dem führenden internationalen Physikjournal ,,Physical Review Letters" publiziert wurde (Phys. Rev. Lett. 106, 234102 (2011)), konnte jüngst in einem optischen Experiment erstmals experimentell realisiert werden. In dem Experiment der Arbeitsgruppe von Prof. Rajarshi Roy (University of Maryland) wird ein durch einen Laserstrahl erzeugtes Intensitätsmuster in einem Netzwerk aus Flüssigkristallzellen von einer Kamera aufgenommen und zurückgekoppelt. Entscheidend dabei ist, dass verschiedene Bereiche des Musters getrennt angesteuert werden können. Dies ermöglicht die gewünschte interne Kopplung und die systematische Veränderung der Parameter. Neben dem experimentellen Nachweis gelang den US-Wissenschaftlern gemeinsam mit ihren TU-Kollegen außerdem eine einfache mathematische Beschreibung und Analyse der beobachteten Szenarien.
Homepage des Sonderforschungsbereichs 910:http://www.itp.tu-berlin.de/sfb910
3865 Zeichen
Weitere Informationen erteilt Ihnen gern: Prof. Dr. Eckehard Schöll, PhD, Institut für Theoretische Physik der TU Berlin, Hardenbergstr. 36, 10623 Berlin, Tel.: 030/314-23500, Fax: 030/314-21130, E-Mail: schoell@physik.tu-berlin.de
http://www.tu-berlin.de
TU Berlin, Stabsstelle Presse, Öffentlichkeitsarbeit und Alumni
Straße des 17. Juni 135 10623 Berlin
Pressekontakt
http://www.pressestelle.tu-berlin.de/menue/service_fuer_journalisten
TU Berlin, Institut für Theoretische Physik
Straße des 17. Juni 135 10623 Berlin
Diese Pressemitteilung wurde über PR-Gateway veröffentlicht.
Für den Inhalt der Pressemeldung/News ist allein der Verfasser verantwortlich. Newsfenster.de distanziert sich ausdrücklich von den Inhalten Dritter und macht sich diese nicht zu eigen.
Weitere Artikel in dieser Kategorie
16.01.2025 | TQ-Group
Mit leistungsstarken TQ-Motoren auf Marsmission
Mit leistungsstarken TQ-Motoren auf Marsmission
14.01.2025 | Impressum - bedent GmbH
Online Shop für Dentalbedarf in der Schweiz - Ihre zuverlässige Quelle für hochwertigen Zahnarztbedarf
Online Shop für Dentalbedarf in der Schweiz - Ihre zuverlässige Quelle für hochwertigen Zahnarztbedarf
09.01.2025 | Dr. Paul Jirak, FEBO Dr. Marietheres Jirak
Augenlaserspezialisten in Österreich - Ihr Weg zu klarer Sicht
Augenlaserspezialisten in Österreich - Ihr Weg zu klarer Sicht
09.01.2025 | Pfeiffer Vacuum+Fab Solutions
Innovative Ventiltechnologie der Series E auf der Semicon Europa
Innovative Ventiltechnologie der Series E auf der Semicon Europa
06.01.2025 | Unternehmensgruppe SIHOT
Politik trifft Wirtschaft: Finanz- und Wissenschaftsminister Jakob von Weizsäcker besucht SIHOT
Politik trifft Wirtschaft: Finanz- und Wissenschaftsminister Jakob von Weizsäcker besucht SIHOT