Neues Verfahren verbessert Haltbarkeit der Beschichtung auf Werkzeugen
11.07.2018
Wissenschaft, Forschung & Technik
In der industriellen Produktion kommen zunehmend diamantbeschichtete Werkzeuge aus Hartmetall zum Einsatz. Problematisch ist bislang die Schichthaftung der Werkzeuge, insbesondere bei der Bearbeitung von Verbund- und Leichtbauwerkstoffen. Durch die dynamische Belastung beim Schneiden der Verbundwerkstoffe sind die Anforderungen an das Werkzeug wesentlich höher als bei der Verarbeitung von Werkstücken mit homogenem Gefüge.
Dr. Manuel Mee vom Fraunhofer-Institut für Werkstoffmechanik IWM hat in einem von der Baden Württemberg Stiftung geförderten Projekt eine neue Methode entwickelt, wie die Haftung der Diamantbeschichtung auf Hartmetallwerkzeugen verbessert werden kann, um einen deutlichen Gewinn bei den Standzeiten zu erzielen.
Bei dem für die Zerspanung dominierenden Werkstoff Hartmetall handelt es sich um einen Verbund aus dem sehr harten Wolframkarbid, der in einer metallischen Matrix gebunden wird und zumeist aus Cobalt besteht. Beim Beschichten mit Diamant beeinträchtigt jedoch letzteres die Adhäsion der Schicht auf dem Werkzeug. Bislang ist daher eine nasschemische Vorbehandlung üblich, um das Cobalt in einem oberflächennahen Bereich zu entfernen. Dieser Ansatz wirkt sich allerdings negativ auf die Bruchzähigkeit der Randzone aus. Insbesondere bei anisotropen Werkstoffen wie den kohlefaserverstärkten Kunststoffen führt dies zu dynamischen Belastungen und in Folge dessen zur Zerrüttung der Werkzeugoberfläche. Die Konsequenz ist ein frühzeitiger Ausfall, der sich durch ein Versagen der Schichthaftung äußert.
Dr. Manuel Mee entwickelte ein Verfahren, mit dem sich durch Verknüpfung unterschiedlicher ineinandergreifender Lösungsansätze die Problematik einer Destabilisierung der Werkzeugoberfläche gänzlich vermeiden lässt. Außerdem besteht die Möglichkeit das in dieser Weise hergestellte Werkzeug nach dem Verschleiß der Beschichtung wieder aufzubereiten. Dadurch sinkt der Materialbedarf. Das Verfahren wurde von Dr. Mee in seiner Dissertation beschrieben und hat dafür 2017 den Werkstoffmechanik-Preis der KSPG Automotive (inzwischen Rheinmetall Automotive) erhalten.
Ursprünglich wurde das Verfahren für Zerspanwerkzeuge entwickelt und kann mittlerweile auf diverse Werkzeuggruppen aus Hartmetall, insbesondere Stanz- und Umformwerkzeuge, übertragen werden. Damit ist die neue Methode für eine wesentlich größere Bandbreite einsetzbar. Die Werkstücke werden derzeit unter realen Bedingungen getestet.
Die Entwicklung wurde international patentrechtlich geschützt. Die Technologie-Lizenz-Büro (TLB) GmbH ist mit der weltweiten wirtschaftlichen Umsetzung dieser zukunftsweisenden Technologie beauftragt und bietet Unternehmen Möglichkeiten der Lizenzierung oder zum Kauf der Schutzrechte.
Für weitere Informationen: Innovationsmanager Dr. Frank Schlotter (schlotter@tlb.de)
http://www.tlb.de
Technologie-Lizenz-Büro (TLB) GmbH
Ettlinger Str. 25 76137 Karlsruhe
Pressekontakt
http://www.tlb.de
Technologie-Lizenz-Büro (TLB) GmbH
Ettlinger Str. 25 76137 Karlsruhe
Diese Pressemitteilung wurde über PR-Gateway veröffentlicht.
Für den Inhalt der Pressemeldung/News ist allein der Verfasser verantwortlich. Newsfenster.de distanziert sich ausdrücklich von den Inhalten Dritter und macht sich diese nicht zu eigen.
Weitere Artikel von Annette Siller
28.07.2020 | Annette Siller
On-Chip Laser-Absorptionsspektrometer macht kleines Analysegerät möglich
On-Chip Laser-Absorptionsspektrometer macht kleines Analysegerät möglich
18.06.2020 | Annette Siller
Neuartiges Sortiergerät analysiert Saatgut und macht es nachvollziehbar
Neuartiges Sortiergerät analysiert Saatgut und macht es nachvollziehbar
14.05.2020 | Annette Siller
Wasserlösliche und biologisch abbaubare Stützstrukturen für 3D-Druckverfahren
Wasserlösliche und biologisch abbaubare Stützstrukturen für 3D-Druckverfahren
21.04.2020 | Annette Siller
3D-Oberflächenmessung in Hochgeschwindigkeit durch konfokale Rastermikroskopie
3D-Oberflächenmessung in Hochgeschwindigkeit durch konfokale Rastermikroskopie
29.10.2019 | Annette Siller
Hochdichte Faserplatte "Bioflexi" aus nachwachsenden Rohstoffen ist völlig flexibel formbar
Hochdichte Faserplatte "Bioflexi" aus nachwachsenden Rohstoffen ist völlig flexibel formbar
Weitere Artikel in dieser Kategorie
25.11.2024 | BMF Precision Inc.
IMSEAM an der Universität Heidelberg: Mit 3D-Druck die Mikrofluidik vorantreiben
IMSEAM an der Universität Heidelberg: Mit 3D-Druck die Mikrofluidik vorantreiben
23.11.2024 | Stcwelt
High-Tech, Hohe Renditen: KI-gestützte Handelslösungen für deutsche Investoren von STCWelt
High-Tech, Hohe Renditen: KI-gestützte Handelslösungen für deutsche Investoren von STCWelt
21.11.2024 | MERKLE CAE SOLUTIONS GmbH
Merkle CAE Solutions "On AIR"
Merkle CAE Solutions "On AIR"
18.11.2024 | Bundesverband IT-Mittelstand e.V.
DiNa - Digitale Nachhaltigkeit im IKT-Mittelstand: Start der zweiten Projektphase
DiNa - Digitale Nachhaltigkeit im IKT-Mittelstand: Start der zweiten Projektphase
15.11.2024 | Simovative GmbH
Simovative schafft einen neuen Standard für Hochschulprozesse an der HWR Berlin
Simovative schafft einen neuen Standard für Hochschulprozesse an der HWR Berlin